Research Articie
13 June 2025
A Boosted Deep ConVNet embedding Long Short Term Memory with Synthetic Minority Oversampling Techniques as Foiling Model for Payment Card Fraud
Lateef Gbolahan Salaudeen
1
lsalaudeen@chrislanduniversity.edu.ng
,
Danlami Gabia
2
,
Muhammad Garbaa
3
,
Hassan Umar Surua
4
show author's information
- 1 : Kebbi State University of Science and Technology, Aliero, P.M.B 1144, Aliero, Kebbi State, Nigeria;Department of Computer Science, College of Natural and Applied Sciences
Chrisland University, Abeokuta, PMB 2135 Owode-Ajebo Road, Abeokuta, Nigeria
- 2 : Kebbi State University of Science and Technology, Aliero, P.M.B 1144, Aliero, Kebbi State, Nigeria
- 3 : Kebbi State University of Science and Technology, Aliero, P.M.B 1144, Aliero, Kebbi State, Nigeria
- 4 : Kebbi State University of Science and Technology, Aliero, P.M.B 1144, Aliero, Kebbi State, Nigeria
DOI:
10.55578/jift.2506.005
Keywords:
Fraud Detection System
,
Imbalance Dataset
,
Deep Learning
,
Financial Institutions